LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034 **B.Sc. DEGREE EXAMINATION – MATHEMATICS** THIRD SEMESTER – NOVEMBER 2018 MT 3501 - ALGEBRA, CALCULUS AND VECTOR ANALYSIS Dept. No. Date: 29-10-2018 Max.: 100 Marks Time: 01:00-04:00 PART - A $(10 \times 2 = 20)$ Answer ALL questions. 1. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{a} x dx dy dz$ 2. Find $\frac{\partial(u,v)}{\partial(x,v)}$ when $u = x^2 - y^2$; $v = x^2 + y^2$. 3. Eliminate the arbitrary constants from $z = (x^2 + a)(y^2 + b)$. 4. Solve $p + q = \sin x + \sin y$. 5. If $\varphi(x, y, z) = x^2 y + y^2 x + z^2$, find $\nabla \varphi$ at (1,1,1). 6. Prove that div $\vec{r} = 3$, where \vec{r} is the position vector. 7. Find L (Sin2t). 8. Compute $L^{-1} \left| \frac{1}{s-3} + \frac{1}{s-4} \right|$ 9. Find the sum of all divisors of 360. 10. State Fermat's theorem. PART - BAnswer any FIVE questions $(5 \times 8 = 40)$ 11. Change the order of integration and evaluate the integral $\iint_{V} \frac{e^{-y}}{y} dx dy$. 12. Express $\int x^m (1-x^n)^p dx$ in terms of Gamma functions and evaluate the integral $\int x^5 (1-x^3)^{10} dx$. 13. Solve $p^2 + pq = z^2$. 14. Show that the vector $2x\hat{i} + (x^2 + 2yz)\hat{j} + (y^2 + 1)\hat{k}$ is irrotational. 15. Solve $p^2 + q^2 = z^2(x^2 + y^2)$. 16. Find the value of $L\left[\frac{\cos 3t - \cos 2t}{t}\right]$. 17. Evaluate $L^{-1}\left[\frac{1}{(s^2+a^2)^2}\right]$.

18. Show that 18! + 1 is divisible by 437.

PART – C

Answer any THREE questions.

 $(2 \times 20 = 40)$

19. (a) Evaluate $\iint xydxdy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$.

(b) Prove that
$$\beta(m,n) = \frac{\overline{|m|n|}}{\overline{|m+n|}}$$
. (10+10)

20. (a) Find the general solution of (y + z)p + (z + x)q = x + y.

(b) (i) Solve: $p^2 + q^2 = npq$.(ii) Solve: $z^4q^2 - z^2p = 1$. (10+10)

21. Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = sint$ given that $y = \frac{dy}{dt} = 0$ when t = 0.

22. (a) Verify Green's theorem in the XY plane for $\int_C (xy + y^2) dx + x^2 dy$ where C is the closed curve in the region bounded by y = x; $y = x^2$.

\$\$\$\$\$\$

(b) State and prove Wilson's theorem.

(10